atoms than the hydrogen atoms attached to C(3) and C(6). The distances for these four internal hydrogen bonds are: in ring one, N(2)-H(7)···Cl 2·40 Å and C(3)-H(3)···Cl 2·66 Å; in ring two, N(4)-H(8)···Cl 2·28 Å and C(6)-H(6)···Cl 2·73 Å. As the N-H···Cl bonds are stronger than the C-H···Cl bonds, the rings are tipped slightly toward the chlorine atoms forming the N-H···Cl bonds, as shown in Table 7. Both the ring tipping and the shorter hydrogen-bond distance involving H(8) show that ring 2 is more strongly hydrogen bonded than ring 1.

Table 7.	Tilt oj	f the pyr	azole rings	due to	hydrogen
bonding	in Cu($Pz)_4Cl_2$,	Ni(Pz) ₄ Cl ₂	and N	$i(Pz)_4Br_2$

Angle	Cu(Pz) ₄ Cl ₂	Ni(Pz) ₄ Br	Ni(Pz)₄Cl₂
Ring 1			
N(2)-N(1)-Cu	125°	126°	123°
C(3) - N(1) - Cu	128	128	130
Ring 2			
N(4)-N(3)-Cu	122	122	121
C(6)-N(3)-Cu	132	134	134

The data of Table 7 show that a similar tipped ring orientation is found in the complexes $Ni(Pz)_4Cl_2$ and $Ni(Pz)_4Br_2$.

Although the molecular structure of $Cu(Pz)_4Cl_2$ is very similar to those of Ni(Pz)_4Cl_2 and Ni(Pz)_4Br_2, the packing of the copper complex is different from that of the nickel complexes. If one were to reverse the assignment of N(2) and C(3) in ring 1 in the copper complex (equivalent to a rotation of 180° about the N(1)-Cu bond or, alternatively, to a rotation of 90° about the Cu-Cl bond), then the packing of the three compounds would be the same. There is the possibility that the assignment of N(2) and C(3) for the nickel complexes was incorrect as the structures of these compounds were determined by X-ray diffraction. For this reason a neutron structure determination of Ni(Pz)₄Cl₂ is planned. However, the evidence available at present (*i.e.*, the close agreement of bond distances and angles of the Pz ligands, of the hydrogen bonding and of the thermal parameters for the three complexes, and the fact that the *R* values are higher if one refines the nickel compounds with the N(2) and C(3) atoms interchanged) strongly suggests that the assignment of N(2) and C(3) is correct as reported.

All computer calculations (except for the final refinement cycles) on this structure were performed using the X-RAY Program System (1972).

The stereo figure was drawn with the *ORTEP* Fortran plot program (Johnson, 1965).

References

- ALPERIN, H. & PRINCE, E. (1970). J. Res. Natl. Bur. Stand. U.S. 74C, 89–95.
- BACON, G. E. (1972). Acta Cryst. A 28, 357-358.
- FINGER, L. (1972). RFINE. A Fortran IV Computer Program for Structure Factor Calculations and Least-Squares Refinement of Crystal Structures. Geophysical Laboratory, Carnegie Institution of Washington. Unpublished.
- JOHNSON, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL-3794.
- MIGHELL, A. D., REIMANN, C. W. & SANTORO, A. (1969). Acta Cryst. B25, 595–599.
- PRINCE, E. (1972). J. Chem. Phys. 56, 4352-4355.
- PRINCE, E., MIGHELL, A. D., REIMANN, C. W. & SANTORO, A. (1972). Cryst. Struct. Commun. 1, 247–252.
- REIMANN, C. W., MIGHELL, A. D. & MAUER, F. A. (1967). Acta Cryst. 23, 135–141.
- X-RAY Program System (1972). Technical Report TR-192 of the Computer Science Center, Univ. of Maryland, June 1972.

Acta Cryst. (1975). B31, 2482

Structure Cristalline du Tripolyphosphate de Zinc Heptadécahydraté: $Zn_5(P_3O_{10})_2$. 17H₂O

PAR M. T. AVERBUCH-POUCHOT, A. DURIF ET J. C. GUITEL

Laboratoire des Rayons X, CNRS, B.P. 166, Centre de Tri, 38042-Grenoble Cedex, France

(Reçu le 14 avril 1975, accepté le 18 avril 1975)

Zinc tripolyphosphate heptadecahydrate, $Zn_5(P_3O_{10})_2.17H_2O$, is triclinic with a=10.766 (8), b=10.316 (8), c=8.525 (5) Å, $\alpha=111.39$ (5), $\beta=115.08$ (5), $\gamma=70.19$ (5)°, and Z=1. The atomic arrangement has been determined by using 3558 independent reflexions. The final *R* value is 0.04. This is the first known crystal structure of a bivalent cation tripolyphosphate.

Introduction

Les principales caractéristiques cristallographiques et la préparation chimique du tripolyphosphate de zinc

heptadécahydraté: $Zn_5(P_3O_{10})_2$. $17H_2O$ ont déjà été décrites (Averbuch-Pouchot & Durif, 1975). Nous rappelons simplement sa maille: a=10,766 (8), b=10,316 (8), c=8,525 (5) Å; $\alpha=111,39$ (5), $\beta=$

115,08 (5), $\gamma = 70,19$ (5)°. Cette maille renferme une seule unité formulaire. Ce sel est le premier tripolyphosphate de cation bivalent caractérisé avec certitude. L'anion tripolyphosphate P₃O₁₀ est constitué par un enchaînement linéaire de trois tétraèdres PO₄, le tétraèdre central mettant en commun deux de ses atomes d'oxygène avec les tétraèdres terminaux (Fig. 1).

Techniques expérimentales

Le cristal utilisé était taillé approximativement en forme d'un cube de 15/100 mm de côté de sorte qu'aucune correction d'absorption n'était nécessaire compte tenu de la longueur d'onde utilisée (Mo $K\alpha_1\alpha_2$). 3558 réflexions indépendantes ont été mesurées à l'aide d'un diffractomètre automatique Philips PW 1100 dans un domaine angulaire: $3 < \theta < 30^\circ$. Chaque réflexion était balayée à la vitesse de $0,02^\circ s^{-1}$ dans un domaine de $0,8^\circ$. Le fond continu était mesuré durant 10 secondes aux deux extrémités de ce domaine qui était exploré en balayage ω . Aucune variation significative des trois réflexions de référence choisies (154, 516 et 560) n'a été observée durant les mesures.

Fig. 1. Représentation schématique d'un anion tripolyphosphate P_3O_{10} .

Détermination de la structure

La structure a été déterminée par des méthodes classiques: interprétation de la fonction de Patterson suivie de synthèses de Fourier. Une série d'affinements (Prewitt, 1966) conduit rapidement à un facteur R =0,04. A ce stade, une synthèse de Fourier-différence a été effectuée pour confirmer le degré d'hydratation de

Tableau 1. Paramètres de positions atomiques et B_{eq} pour $Zn_5(P_3O_{10})_2.17H_2O$

Les écarts standard sont donnés entre parenthèses.

	x	у	Z	B_{eq}
Zn(1)	0,00000	0,00000	0,00000	1,52
Zn(2)	0,46640 (5)	0,05593 (5)	0,74300 (6)	1,50
Zn(3)	0,26862 (2)	0,54272 (5)	0,26141 (7)	1,84
P(1)	0,2537 (1)	0,0660 (1)	0,3626 (1)	1,21
P(2)	0,1769 (1)	0,2457 (1)	0,1240 (1)	1,36
P(3)	0,4548 (3)	0,2208 (1)	0,1299 (1)	1,28
O(L12)	0,2437 (3)	0,2067 (3)	0,3106 (4)	1,78
O(<i>L</i> 23)	0,3019 (3)	0,1816 (3)	0,0453 (4)	1,78
O(E11)	0,1150 (3)	0,0249 (3)	0,2664 (4)	1,69
O(E12)	0,6278 (3)	0,0492 (3)	0,6918 (4)	1,92
O(E13)	0,2894 (3)	0,1165 (3)	0,5644 (4)	1,78
O(E21)	0,1385 (3)	0,4040 (3)	0,1613 (5)	2,10
O(<i>E</i> 22)	0,0640 (3)	0,1677 (4)	-0,0023 (4)	1,96
O(E31)	0,5498 (4)	0,1204 (4)	0,2463 (5)	2,76
O(E32)	0,4955 (4)	0,1950 (4)	-0,0289 (4)	2,53
O(E33)	0,4400 (4)	0,3738 (4)	0,2377 (5)	2,50
W(1)	0,5877 (5)	0,3207 (4)	0,6337 (7)	3,95
W(2)	0,7771 (7)	0,4327 (5)	0,9914 (6)	4,63
W(3)	0,8970 (4)	0,2827 (4)	0,7097 (5)	2,62
W(4)	0,6861 (4)	0,4601 (4)	0,4755 (5)	2,96
W(5)	0,8271 (4)	0,1562 (4)	0,0794 (5)	3,01
W(6)	0,8691 (6)	0,0805 (6)	0,3937 (7)	5,16
W(7)	0,1183 (6)	0,3764 (6)	0,7137 (8)	5,35
W(8)	0,5000	0,5000	0,000	10,39
W(9)	0,9142 (9)	0,3934 (9)	0,3854 (12)	11,45

Tableau 2. Paramètres thermiques anisotropes β_{ij} (×10⁵)

	β(11)	$\beta(22)$	β(33)	β(12)	β(13)	β(23)
Zn(1)	394 (7)	500 (7)	618 (11)	- 229 (6)	9 (7)	195 (7)
Zn(2)	355 (5)	552 (6)	546 (8)	-120(4)	69 (5)	208 (5)
Zn(3)	307 (5)	412 (5)	895 (9)	- 145 (4)	164 (Š)	103 (5)
P(1)	266 (9)	476 (11)	442 (15)	-124(8)	24 (9)	186 (10)
P(2)	319 (9)	420 (10)	619 (16)	-182(8)	-43(10)	233 (10)
P(3)	414 (10)	347 (10)	503 (15)	-180(8)	128 (10)	39 (10)
O(L12)	492 (31)	536 (33)	637 (47)	-250(36)	-85(31)	241 (32)
O(L23)	494 (32)	562 (34)	689 (49)	-323(27)	110 (32)	24 (33)
O(E11)	353 (28)	747 (37)	606 (48)	-255 (26)	29 (30)	262 (34)
O(E12)	474 (32)	534 (34)	1060 (57)	-90(27)	343 (35)	202 (36)
O(E13)	397 (30)	692 (36)	493 (45)	-85(26)	29 (30)	216 (33)
O(E21)	422 (31)	441 (33)	1376 (65)	-107(26)	114 (37)	350 (38)
O(E22)	501 (32)	658 (37)	807 (54)	- 362 (29)	- 171 (34)	410 (37)
O(E31)	587 (37)	888 (45)	1493 (75)	- 319 (34)	-71 (42)	727 (48)
O(E32)	876 (45)	951 (45)	690 (55)	- 513 (38)	374 (41)	-47 (40)
O(E33)	485 (34)	512 (36)	1357 (68)	- 228 (29)	278 (40)	- 236 (40)
W(1)	927 (51)	668 (44)	2446 (107)	- 384 (40)	86 (60)	407 (55)
W(2)	2328 (97)	831 (52)	1457 (87)	- 305 (56)	1038 (77)	250 (54)
W(3)	700 (40)	677 (41)	1016 (63)	19 (33)	141 (41)	341 (42)
W(4)	748 (42)	962 (49)	911 (64)	- 301 (38)	-63 (41)	263 (45)
W(5)	538 (38)	873 (47)	1373 (71)	-119 (34)	280 (43)	5 (47)
W(6)	1521 (72)	1744 (80)	1778 (102)	-834 (63)	956 (73)	-455 (71)
W(7)	1479 (78)	1527 (78)	2699 (135)	- 382 (64)	894 (85)	535 (82)
W(8)	3062 (210)	2323 (167)	8526 (509)	446 (148)	3906 (292)	2845 (248)
W(9)	3184 (173)	3689 (189)	4642 (258)	- 649 (148)	1977 (177)	700 (175)

ce sel. L'ensemble de l'arrangement a été affiné dans le groupe spatial centrosymétrique $P\overline{1}$. La présence d'une molécule d'eau non liée [W(8)] sur un centre de symétrie sera discutée dans le paragraphe consacré à la description de cet arrangement. Le Tableau 1 donne les coordonnées des positions atomiques dans le groupe $P\overline{1}$ ainsi que les facteurs thermiques isotropes B_{eq} . Le Tableau 2 donne les paramètres thermiques anisotropes β_{ii} .*

Description de la structure

Les Figs. 2 et 3 donnent les projections de cet arrangement sur les plans *ab* et *ac*, montrant l'enchaînement des anions tripolyphosphate P_3O_{10} et des atomes de zinc.

Les atomes de zinc qui assurent la cohésion entre les anions possèdent trois types distincts de coordinations. L'atome Zn(1) placé sur un centre de symétrie est entouré par quatre atomes d'oxygène et deux molécules d'eau, l'atome Zn(2) se trouve dans un site tétraédrique

Tableau 3. Distances interatomiques Zn-O et Zn-H₂O

$2 \times Zn(1) - O(E11)$	2,058 (3) Å		
$2 \times Zn(1) - O(E22)$	2,081 (4)	Zn(3)-O(E21)	2,058 (4) Å
$2 \times Zn(1) - W(5)$	2,181 (4)	Zn(3) - O(E33)	2,092 (3)
	, ,,	Zn(3) - W(1)	2,146 (5)
Zn(2) - O(E31)	1,929 (5)	Zn(3) - W(2)	2,100 (6)
Zn(2) - O(E12)	1,938 (4)	Zn(3) - W(3)	2,090 (3)
Zn(2) - O(E13)	1,959 (3)	Zn(3) - W(4)	2,103 (5)
Zn(2) - O(E32)	1,930 (3)	.,	,

Fig. 2. Projection de $Zn_5(P_3O_{10})_2$. 17H₂O sur le plan *ab*.

Fig. 3. Projection de $Zn_5(P_3O_{10})_2$. 17H₂O sur le plan *ac*.

^{*} La liste des facteurs de structure a été déposée au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 31078: 37 pp., 1 microfiche). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1 NZ, Angleterre.

Tableau 4. Distances interatomiques et principaux angles de liaison dans l'anion P_3O_{10}

P(1)-O(E1 P(1)-O(E1) P(1)-O(E1) P(1)-O(L1)	1) 1,500 (3) Å 2) 1,525 (3) 3) 1,524 (3) 2) 1,629 (4)	$\begin{array}{c} O(L12) - O(E11)\\ O(L12) - O(E12)\\ O(L12) - O(E13)\\ O(E11) - O(E12)\\ O(E11) - O(E13)\\ O(E12) - O(E13)\\ \end{array}$	2,534 (6) Å 2,536 (4) 2,468 (5) 2,519 (5) 2,529 (4) 2,526 (5)
	O(L12)-P(1)-O(E O(L12)-P(1)-O(E O(L12)-P(1)-O(E O(L12)-P(1)-O(E O(E 11)-P(1)-O(E O(E 11)-P(1)-O(E O(E 12)-P(1)-O(E O(E 12)-P(1)-O(E O(E 12)-P(1)-O(E O(E 12)-P(1)-O(E O(E O(E 12)-P(1)-O(E O(E O(E O(E O(E O(E O(E O(E O(E O(E	$\begin{array}{cccc} 211) & 108,1 (2)^{\circ} \\ 122) & 106,9 (2) \\ 133) & 102,9 (2) \\ 122) & 112,7 (2) \\ 113,5 (2) \\ 113,8 (2) \end{array}$	
P(2)-O(<i>E</i> 2 P(2)-O(<i>E</i> 2 P(2)-O(<i>L</i> 12 P(2)-O(<i>L</i> 23	1) 1,492 (3) Å 2) 1,497 (3) 2) 1,595 (4) 3) 1,592 (4)	O(L23)-O(E21) O(L23)-O(E22) O(L23)-O(L12) O(E21)-O(E22) O(E21)-O(L12) O(E22)-O(L12)	2,534 (4) Å 2,472 (5) 2,499 (6) 2,547 (5) 2,492 (5) 2,553 (4)
	O(L23)-P(2)-O(L)O(L23)-P(2)-O(E)O(L23)-P(2)-O(E)O(L23)-P(2)-O(E)O(L12)-P(2)-O(E)O(L12)-P(2)-O(E)O(E21)-P(2)-O(E)O(E)O(E)O(E)O(E)O(E)O(E)O(E)O(E)O(E)	$\begin{array}{cccc} 12) & 103,3 (3)^{\circ} \\ \hline 21) & 110,5 (2) \\ \hline 222) & 106,3 (2) \\ \hline 211 & 107,7 (2) \\ \hline 222) & 111,3 (2) \\ \hline 222 & 116,9 (2) \\ \end{array}$	
P(3)-O(E3 P(3)-O(E3 P(3)-O(E3 P(3)-O(L23	1) 1,518 (4) Å 2) 1,502 (5) 3) 1,506 (3) 3) 1,630 (4)	O(L23)-O(E31) O(L23)-O(E32) O(L23)-O(E33) O(E31)-O(E32) O(E32)-O(E33) O(E31)-O(E33)	2,517 (4) Å 2,477 (7) 2,543 (5) 2,518 (7) 2,507 (5) 2,500 (5)
	O(L23)-P(3)-O(E O(L23)-P(3)-O(E O(L23)-P(3)-O(E O(E31)-P(3)-O(E O(E32)-P(3)-O(E O(E31)-P(3)-O(E	$\begin{array}{cccc} 31) & 106,1 (2)^{\circ} \\ 32) & 104,5 (2) \\ 33) & 108,3 (2) \\ 33) & 111,5 (2) \\ 33) & 112,9 (2) \\ 33) & 112,9 (2) \\ 332) & 113,0 (2) \end{array}$	
P(1)-P(2) P(2)-P(3) P(1)-P(3)	2,936 (2) Å 2,901 (2) 4,413 (2)	P(1)-O(<i>L</i> 12)-P(2) P(2)-O(<i>L</i> 23)-P(3)	131,2 (2)° 128,4 (2)
9	O(E 13)		

P(1) OO(E12) O(L12) O(E31) O(E.33) O(E11) С O(E21) P(2) P(3) O(L23) Ο OO(E22) O(E32) Fig. 4. Détails de l'anion tripolyphosphate P₃O₁₀ dans $Zn_{5}(P_{3}O_{10})_{2}.17H_{2}O.$

Tableau5. Distances interatomiques des moléculesd'eau non liées à leurs plus proches voisins

W(6)-O(E31)	3,071 (7)	W(7)-O(E13)	2,840 (6)
W(6)-O(E11)	3,074 (8)	W(7)-W(2)	2,706 (7)
W(6)-W(3)	2,720 (6)	W(7)-W(3)	2,791 (10)
W(6)-W(5)	2,885 (9)	W(7)-W(9)	2,840 (10)
W(6)-W(6)	2,968 (12)	W(7)-W(9)	2,734 (13)
W(8)-W(2) W(8)-O(E32) W(8)-O(E33)	2,856 (7) × 2 3,090 (5) × 2 3,137 (5) × 2	W(9)-W(2) W(9)-W(4) W(9)-W(5) W(9)-W(7) W(9)-W(7) W(9)-W(9)	3,140 (11) 2,678 (12) 2,915 (9) 2,840 (10) 2,734 (13) 2,977 (20)

Tableau 6. Axes principaux des ellipsoïdes de vibration thermique

 U^2 : carrés moyens des amplitudes de vibration thermique le long des axes principaux des ellipsoïdes de vibration. $\theta_a, \theta_b, \theta_c$: angles des axes principaux des ellipsoïdes de vibration thermique avec les axes cristallographiques a, b, c.

	U (Å)	$\theta_{a}(^{\circ})$	$\theta_{b}(^{\circ})$	$\theta_{c}(^{\circ})$
$\mathbf{7n}(1)$	0 168	128	67	60
	0,100	105	120	22
	0,131	105	139	01
7-(2)	0,110	42	29	01
Zn(2)	0,158	95	33	82
	0,136	158	121	45
	0,117	69	100	46
Zn(3)	0,171	128	111	14
	0,153	47	108	76
	0,131	68	28	86
P(1)	0,148	103	40	77
	0,119	145	130	36
	0,100	58	92	57
P(2)	0,166	128	76	47
•	0,117	102	152	46
	0,101	41	66	78
P(3)	0,146	47	116	89
	0,127	122	121	12
	0,106	61	42	78
O(L12)	0,190	41	100	128
```	0,137	114	168	56
	0,113	59	83	56
O(L23)	0,179	64	133	80
<b>、</b>	0,155	127	111	13
	0,108	48	51	81
O(E11)	0,187	105	39	81
. ,	0,130	120	123	13
	0.112	34	72	82
O(E12)	0.176	79	91	37
<b>、</b> - <b>,</b>	0.154	85	16	102
	0.135	12	74	125
O(E13)	0.180	66	9	105
- ()	0.153	30	90	128
	0.109	72	99	42
O(E21)	0.209	115	92	20
=(===)	0.139	29	84	86
	0.129	76	6	109
O(E22)	0,217	129	72	53
0(222)	0 124	105	147	40
	0,109	43	64	77
O(F31)	0,250	118	71	45
0(251)	0,149	40	84	74
	0,141	64	20	121
O(F32)	0,141	65	133	76
0(132)	0,255	21	<u></u> <u></u>	102
	0,134	111	03	102
O(F33)	0,130	106	131	22
0(133)	0,241	32	102	108
	0,151	62	102	76
	0,110	05	44	/0

Tableau 6 (suite)

		``	,	
	$U(\text{\AA})$	$\theta_a(^\circ)$	$\theta_b(^\circ)$	$\theta_{c}(^{\circ})$
W(1)	0,294	125	99	19
	0,206	50	110	73
	0,146	59	22	97
W(2)	0,331	24	82	91
	0,193	91	35	77
	0,172	114	124	13
W(3)	0,215	22	49	123
	0,181	98	62	49
	0,144	70	126	58
W(4)	0,223	148	91	48
	0,206	73	4	113
	0,142	64	86	51
W(5)	0,242	114	146	35
	0,177	84	56	57
	0,157	25	94	99
W(6)	0,338	80	140	58
	0,219	21	53	106
	0,184	109	76	36
W(7)	0,283	69	96	45
	0,263	102	38	81
	0,232	155	127	46
W(8)	0,532	68	74	52
	0,285	123	52	85
	0,174	139	138	38
W(9)	0,419	84	16	115
	0,399	46	74	71
	0,317	135	94	32

formé de quatre atomes d'oxygène alors que le troisième atome de zinc Zn(3) est dans un site octaédrique composé de deux atomes d'oxygène et de quatre molécules d'eau. Le Tableau 3 donne les distances observées Zn-O et Zn-H₂O dans ces trois types de coordination. Dans tous les cas, les atomes d'oxygène participant aux voisinages des atomes de zinc sont des atomes de type  $O(E_{ij})$ , dits extérieurs aux chaînes P₃O₁₀, c'est-à-dire ne possédant qu'une seule liaison avec un atome de phosphore.

Le détail d'un anion tripolyphosphate  $P_3O_{10}$  est donné par la Fig. 4. En se reportant au Tableau 4 qui donne les principales distances interatomiques et les angles des liaisons dans un anion  $P_3O_{10}$ , on remarquera que les distances des liaisons P-O( $L_{ij}$ ) correspondant à l'atome de phosphore central de la chaîne [P(2)] sont notablement plus courtes (1,59 Å) que les liaisons P(3)-O(L23) et P(1)-O(L12) correspondant aux atomes de phosphore des extrémités de la chaîne (1,63 Å). Cette constatation avait déjà été effectuée par Corbridge (1974) dans une revue critique des tripolyphosphates déjà connus. Une des caractéristiques intéressantes de cet arrangement est l'existence de quatre molécules d'eau non liées à des cations [W(6), W(7), W(8) et W(9)]. Toutes ces molécules se trouvent dans des lacunes formées par des molécules d'eau ou des atomes d'oxygène de type  $O(E_{ij})$ . Le Tableau 5 rassemble les distances de ces molécules d'eau non liées à leurs plus proches voisins.

Les synthèses de Fourier-différence effectuées en fin de structure montrent la présence d'une molécule d'eau O(W8) sur un centre de symétrie. Il s'agit d'une des molécules d'eau non liée dont il vient d'être question. Deux hypothèses peuvent alors être faites.

(a) Remise en question de la symétrie 1 malgré la centrosymétrie de tout le reste de l'arrangement.

(b) Occupation par cette molécule d'eau de positions statistiques de part et d'autre du centre de symétrie. Il semble que cette dernière hypothèse doive être retenue après examen de l'ellipsoïde d'agitation thermique lié à cet atome.

Une étude actuellement entreprise sur la localisation des protons dans cet arrangement devrait permettre de confirmer cette deuxième hypothèse.

Le Tableau 6 donne les axes principaux des ellipsoïdes thermiques et leurs directions par rapport aux axes cristallographiques.

#### Références

- AVERBUCH-POUCHOT, M. T. & DURIF, A. (1975). J. Appl. Cryst. 8, 564.
- CORBRIDGE, D. E. C. (1974). The Structural Chemistry of Phosphorus. Amsterdam: Elsevier.
- PREWITT, C. T. (1966). SFLS5. A Fortran IV Full-matrix Crystallographic Least-squares Program.